
Journal of 

Functional

Biomaterials

Review

Bioactive Polymeric Materials for the Advancement of
Regenerative Medicine

Anthony Iovene 1,2, Yuwen Zhao 1,2 , Shue Wang 1,2,* and Kagya Amoako 1,2,3,*

����������
�������

Citation: Iovene, A.; Zhao, Y.;

Wang, S.; Amoako, K. Bioactive

Polymeric Materials for the

Advancement of Regenerative

Medicine. J. Funct. Biomater. 2021, 12,

14. https://doi.org/10.3390/

jfb12010014

Academic Editor: Anderson

Oliveira Lobo

Received: 12 January 2021

Accepted: 17 February 2021

Published: 20 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Biomedical Engineering Graduate Program, Biomedical Engineering Faculty, Tagliatela College of
Engineering, University of New Haven, 300 Boston Post Rd., West Haven, CT 06516, USA;
aiove1@unh.newhaven.edu (A.I.); yzhao6@unh.newhaven.edu (Y.Z.)

2 Department of Mechanical, Industrial and Biomedical Engineering, Biomedical Engineering Faculty,
Tagliatela College of Engineering, University of New Haven, 300 Boston Post Rd.,
West Haven, CT 06516, USA

3 Biomaterials and Medical Device Innovation Laboratory, Biomedical Engineering Faculty, Tagliatela College
of Engineering, University of New Haven, 300 Boston Post Rd., West Haven, CT 06516, USA

* Correspondence: swang@newhaven.edu (S.W.); kamoako@newhaven.edu (K.A.)

Abstract: Biopolymers are widely accepted natural materials in regenerative medicine, and further
development of their bioactivities and discoveries on their composition/function relationships could
greatly advance the field. However, a concise insight on commonly investigated biopolymers, their
current applications and outlook of their modifications for multibioactivity are scarce. This review
bridges this gap for professionals and especially freshmen in the field who are also interested in
modification methods not yet in commercial use. A series of polymeric materials in research and
development uses are presented as well as challenges that limit their efficacy in tissue regeneration are
discussed. Finally, their roles in the regeneration of select tissues including the skin, bone, cartilage,
and tendon are highlighted along with modifiable biopolymer moieties for different bioactivities.
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1. Introduction

Regenerative medicine is a rapidly growing multidisciplinary field that applies bio-
logical, chemical and engineering principles to promote tissue regeneration. The goal of
regenerative medicine is the repair, restoration or regeneration of lost or injured tissues
using biomaterials, living cells and different signaling factors (i.e., growth factors) [1]. It
has been reported in recent decades that regenerative medicine has significantly developed
in terms of tissue repair and restoration including the cartilage [2–4], skin [5,6], bone [7–12]
and blood vessels [13–15] using various biopolymeric materials. By responding to stimuli
from the surrounding environment, living cells interact with biopolymeric materials to
enhance tissue regeneration or restoration. As the interaction between materials and the
cells are important, appropriate signals generated by biopolymeric materials to guide
cells towards desirable behaviors as required by different types of tissue restoration or
regeneration inside the body is a leading focus in regenerative medicine.

The basic types of biomaterials that have been broadly used in regenerative medicine
can be classified as natural and synthetic polymeric biomaterials. Both natural and syn-
thetic biomaterials alone or in combination possess significant importance in regenerative
medicine due to their good biocompatibility, biodegradability, and bioactivity. Specifically,
to regenerate or restore different types of tissues, the combination of different biopolymers
must acquire appropriate mechanical, physical and biological properties and this can be
achieved due to their chemical and mechanical tunability. Furthermore, the important
factors in tissue regeneration to meet the different tissues’ complex functionalities are the
scaffold architecture, biodegradability, physical stability, and vascularization. For exam-
ple, scaffolds made of polymeric biomaterials should be able to enhance cell biomaterial
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interactions to achieve controllable cellular adhesion, proliferation, differentiation, and
material degradation. Among all these factors, tunable bioactivity of either natural, syn-
thetic, or a combination of both polymer types plays an important role in tissue restoration
and regeneration.

Natural polymeric materials have been greatly investigated and applied in tissue regenera-
tion due to their good biocompatibility and biodegradability compared to synthetic polymeric
materials. Among these natural polymeric materials, collagen and alginate have been used in
the applications of bone, soft tissue, and cartilage regeneration [7,16–19]. Nevertheless, synthetic
polymeric materials have been used as well due to their low cost, ease of processability, and
adjustable chemical and mechanical properties. Among these different synthetic polymeric
materials, polycaprolactone (PCL), poly (lactic acid/L-lactic acid) (PLA/PLLA), poly (lactic-co-
glycolic) acid (PLGA), and poly (ethylene glycol) (PEG) have been widely investigated in the
applications of skin, nerve, and bone regeneration [5,20–22].

Recently, natural polymeric materials have been used in combination with synthetic
polymeric materials to improve bioactivity—including mechanical properties, chemical
properties, and controlled chemical release for regenerative medicine [18,23–27]. During
tissue regeneration, controllable cellular growth, connectedness, and attachment are impor-
tant determining factors for the success of regeneration, which places a stronger emphasis
on the need for vascularization and cellular ingress into the pores within the scaffold. A
major advantage of multi-polymer-type material composition for tissue regeneration is the
capability to tune mechanical strength, degradation rate, cellular adhesion, and chemical
properties. For example, surface modifications have been widely explored to enhance
cellular attachment and cell proliferation with different polymeric materials [28]. It has
been shown in previous studies that controllable cellular growth and attachment are highly
dependent on polymeric materials’ density and porosity, which depends on polymers’
mechanical strengths and physical properties [29,30]. To this end, tissue regeneration has
been explored widely using a combination of natural and synthetic materials to create a
porous and local bioactive environment upon implantation to regenerate damaged and
injured tissues [31,32].

In the remaining sections, we summarize the different types of natural and synthetic
polymeric biomaterials for the application of regenerative medicine with a focus on bioac-
tive and biopassive polymers. Bioactivity of natural, synthetic or a combination of both
biopolymers stemming from mechanical and chemical properties and controlled release of
growth factors is discussed and presented in the context of their application in tissue engi-
neering and regenerative medicine. The chapter highlights several applications including
skin, bone, cartilage, and tendon regeneration.

2. Polymeric Materials: Naturally Derived Polymers

Naturally derived polymers, including collagen, silk, chitosan, alginate, and hyaluronic
acid, are sourced from various natural systems including rat tails, epithelial cells and tis-
sue, bacteria, algae, and silkworm (see Figure 1). The precursors to the finished polymer
undergo refinement to filter out unwanted biological materials and isolate the polymer for
use or so that additional modification can be made to add new functions.

2.1. Collagen

Collagen is one of the most abundant proteins found in the extracellular space of
musculoskeletal tissues in mammals [33]. There are more than 20 different types of collagen,
which represent about 25–35% of the whole-body content. Among these different types of
collagen, types I–IV are the most commonly used and have been used as scaffold materials
for tissue engineering and regenerative medicine [12,33]. Recently, it has been reported that
nanofibers coated with type I collagen have excellent mechanical strength and high porosity
that can enhance cell attachment and proliferation, and thus can support wound healing
and skin regeneration applications [34,35]. Collagen has been considered as a platform for
three-dimensional (3D) culture applications instead of cells generating the substrate. For
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example, collagen hydrogel has been used successfully as matrices for suspending neurons
and astrocytes allowing their growth and maturation and formation of neural networks in
what has been alluded to as a 3D in vitro brain model [36]. Furthermore, collagen infilled
3D printed scaffolds show promise for expanding miRNA transfected progenitor cells for
stimulating osteogenesis and bone repair [37]. Other collagen modification approaches
can result in a mechanical property that influences the property of tissue generated. By
adjusting its fibril density, with or without fibril crosslinking, its stiffness and thus the
stiffness of tissue generated can be modulated as well as immune response [38,39].
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Collagen hybridized with other extracellular matrix materials (such as alginate,
fibronectin, and hyaluronic acid) also shows potential as a platform for biomechanical
signal stimulation, enhanced proliferation, induction of differentiation, and the promotion
of vessel endothelialization in tissue regeneration [40–43]. Moreover, the combination of
collagen with other synthetic polymers has been involved in tissue regeneration applica-
tions as well. For example, Swarnalatha et al. [32] reported the application of composite
PLA–collagen–chitosan enhanced cell proliferation for blood vessel outgrowth. Mechanical
properties of collagen have been modulated through crosslinking to yield collagen with
higher mechanical stability to benefit desired collagen hydrogel stability when implanted
into skin for dermal tissue regeneration [44]. Due to its integrity and processability, fibrous
collagen scaffolds have been applied in the regeneration of various tissues, including
cardiovascular [15], skin [45], tendon, and ligament [46] regenerations. Despite its range
of utility, host response to collagen types manifested as autoimmunity remains a concern.
Type II and IV collagen are considered arthritogenic while Types I and III do not induce
autoimmune reactions [47].

2.2. Chitosan

Chitosan, a linear polysaccharide derived from deacetylation of chitin is a biocompati-
ble and biodegradable cationic polymer. It is the main component in the exoskeletons of
crustaceans’ shells. Chitosan has a similar structure to glycosaminoglycans (GAGs), which
can be degraded into different products, such as glycosylated collagen, by enzymes [48,49].
This structural similarity also enables chitosan to enhance cell adhesion compared to other
synthetic biomaterials [50,51]. Chitosan is a bioactive polymeric material that has a variety
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of applications in tissue engineering and regenerative medicine due to its controllable
mechanical properties, reactive functional groups, ease of processability and minimum
foreign body rejections. Specifically, chitosan’s reactive functional groups (amino and
hydroxyl moieties) provide great possibility for modifications with different entities that
can result in stimuli-responsive biopolymeric materials for the applications of tissue en-
gineering and regenerative medicine. For example, Walker et al. [52] have developed a
temperature sensitive chitosan-based hydrogel to mimic the cartilage matrix for cartilage
regeneration. Khan et al. [18] have demonstrated a mixed hydrogel by mixing chitosan and
poly(ethylenimine) (PEI) to form pH-sensitive chitosan-PEI scaffolds for enhancing cell
attachment, proliferation, and cartilage tissue engineering. Another study has revealed that
the combination of chitosan and fibroblast growth factor type 2 improved wound closure
and fostered the formation of granulation tissue and capillary network [53]. As an ideal
natural biomaterial, chitosan itself or in combination with other hydrogels can be applied
for the applications of cartilage [17,25], bone [2,23,24,54,55], nerve [56,57], and other soft
tissue regenerations [16,58].

2.3. Alginate

Alginate is an anionic and hydrophilic polysaccharide derived primarily from marine
brown seaweed or algae [59,60]. Alginate contains (1–4)-linked β-D-mannuronic acid (M)
and α-L-guluronic acid (G) residues [61]. Between these two residues, G residues can
form ionic crosslinks by associating with divalent cations, which can adjust the affinity
of alginate. Moreover, due to its outstanding properties including ease of processability
and moldability, excellent biocompatibility and biodegradability, alginate has a broad
range of applications as a natural biopolymeric material, especially as three-dimensional
(3D) supporting matrices for tissue restoration and regeneration. Furthermore, alginate
has the ability to interact with cationic polyelectrolytes and proteoglycans, which enables
alginate to form pH-dependent gels. Therefore, alginate plays an important role in the
biodegradability and long-term stability as a polymeric material. For example, it has been
reported by Rowley et al. [62] that the combination of alginate and other molecules could
enhance cellular attachment. Furthermore, as a relatively larger polymer with a molecular
weight (MW) up to 500 kDa and presence of carboxylate side groups, the degradation
rate and mechanical properties of alginate-based biomaterials can be modulated. Recently,
Klock et al. [63] have demonstrated an approach to form hydrogel by encapsulating alginate
with cells and molecules to mimic the natural extracellular matrix (ECM) of tissues that have
widespread applications in tissue regeneration. In recent studies, more and more attention
has been given to the combination of alginate with other natural or synthetic polymeric
materials for broader applications including bone regeneration [7], skin regeneration [64],
wound healing [65], stem cell treatment [66], cartilage regeneration [19,26], and cardiac
tissue regeneration [67].

2.4. Hyaluronic Acid

Hyaluronic acid (HA) is an anionic, nonsulfated glycosaminoglycan. It is a complex
polysaccharide containing amino, hydroxyl, and carboxyl groups, allowing for its further
functionalization [68]. HA is a compound already contained and utilized by the body
within the connective and epithelial tissues, and drug carriers made from this material can
therefore be metabolized. Partly due to this property, it has been used in drug delivery to aid
wound repair, cancer treatment, inflammation control, respiratory disease treatment, and
regenerative medicine [69–72]. It has also found utility in products that aid the regeneration
of aged or diseased cells/tissues. An example is Hylase Wound Gel® (ECR Pharmaceuticals
Co. Inc., Richmond, VA, USA) which uses the salt of hyaluronic acid, sodium hyaluronate,
to maintain tissue hydration and support the healing process of ulcers [68]. Several routes
of hyaluronic acid administration including via ocular, nasal, pulmonary, and parenteral
paths have been approved due to the sheer volume research around the HA material. Low
viscosity hyaluronic acid can be used to enhance the bioavailability of ocular components
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due to its bioadhesive properties [68]. As such, hyaluronic acid-based eye drops for the
treatment of dry eye syndrome are in preclinical evaluation. It binds to water molecules
through noncovalent bonds which drive the formation of a gel-like composition. A recent
study on the modification of hyaluronic acid with gelatin and Epigallocatechin gallate
(EGCG), an ophthalmic pharmaceutical formulation for the treatment of dry eye syndrome,
reported an enhanced retention of the medication within the eye due to hyaluronic acid’s
mucoadhesive properties [68].

2.5. Silk Fibroin

Thousands of years ago, silkworm silk was identified as a precious material with
many favorable properties. Silks are regularly defined as protein polymers produced by
arthropods such as the silkworm and include others such as spiders and bees [73,74]. Silk
Fibroin (SF) is the main protein derived from silkworm silk and has been introduced to
the field of biomaterials for drug delivery and tissue engineering. Two SF filaments are
located in the core of silk and are mostly responsible for their mechanical strength; SF has
excellent tensile properties compared to other biopolymers such as collagen and higher
toughness than Kevlar [73]. SF can be made into many different structures such as thin
film, particulate structures, and three-dimensional structures [74]. In the biomedical field,
silk film has been used as a wound dressing to treat dermatological ailments by aiding the
wound healing process [74]. One exciting application of SF is its utility as bio-inks for 3D
printing [72–74] of hydrogels to mimic the extracellular matrix to support chondrocyte and
cartilage formation in vitro [74].

3. Polymeric Materials: Synthetically Derived Polymers
3.1. Polycaprolactone (PCL)

Polycaprolactone (PCL) is a semicrystalline polyester material which has been widely
used for the applications of tissue engineering and regeneration due to its excellent me-
chanical properties [75,76]. Moreover, the thermal, mechanical, and physical properties of
PCL can be modulated by mixing PCL with other natural or synthetic biomaterials, and the
degradation rate depends upon molecular weight and degree of crystallinity. Compared to
other biomaterials, PCL has the advantage of a high permeability, low degradation rate,
excellent mechanical properties, and nontoxic byproducts, which has rendered it useful for
applications of tissue regeneration in recent years. For example, Williams et al. [77] and
Fujihara et al. [78] have demonstrated the applications of PCL-based scaffolds for bone
regeneration; Barbarisi et al. [22] and Ranjbarvan et al. [5] have shown the applications of
nerve and skin tissue regeneration by using PCL-based scaffolds. Moreover, PCL blended
with other synthetic biomaterials (i.e., PLLA, PLGA) has been investigated for tissue engi-
neering [21,79]. Due to its strong solubility and blend compatibility, PCL has been studied
and used for the applications of cardiac tissue regeneration [80], vascular grafts [13], and
drug delivery [20,81].

3.2. Poly (Lactic Acid) (PLA)

Poly (lactic acid) (PLA) is a thermoplastic and aliphatic polyester produced from
nontoxic, renewable sources such as sugarcane and starch [82]. Lactide acid has two optical
active isomers—L-lactide and D-lactide. Poly (L-lactic acid) (PLLA) is a semicrystalline
polymer with a crystallinity of 37%. PLLA has a broader range of applications in tissue en-
gineering and regenerative medicine due to its low degradation rate, high tensile strength,
ease of processability, and nontoxic byproducts. However, due to its high crystallinity,
the usage of PLLA as a scaffold material can lead to inflammation in the body. Therefore,
by blending with other biomaterials or associating with other molecules, the bioactivity
of PLLA-based scaffolds can be improved. For example, Cui et al. [83] have successfully
demonstrated that Ginsenoside Rg3 (G-Rg3)-coated PLLA fibrous scaffolds reduced scar
formation in a rabbit model. As a synthetic biopolymeric material, PLA/PLLA have been
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used for the applications of wound healing [84], nerve graft regeneration [85], and bone
regeneration [86].

3.3. Poly (Lactide-Co-Glycolic) Acid (PLGA)

Poly (lactic-co-glycolic) acid (PLGA) is a biodegradable thermoplastic polymer syn-
thesized by polymerization of two different monomers—L-lactic acid (LA) and glycolic
acid (GA) [86]. Among a variety of different synthetic biomaterials, PLGA has been a
widely used polymer for the applications of tissue engineering and regenerative medicine
due to its tunable degradation rate and good mechanical properties, especially toughness,
high compatibility, and excellent processability. By adjusting the ratio of LA and GA, the
degradation rate can thus be modulated accordingly. The higher the ratio of GA, the faster
PLGA is expected to degrade. Moreover, the mechanical properties of PLGA-based porous
scaffolds have been investigated for the application of tissue engineering and regenera-
tive medicine. It has been demonstrated that the mechanical properties of PLGA-based
scaffolds can be modified by adjusting pore size, shape, porosity, and copolymer composi-
tion [31]. Due to these attractive characteristics, a variety of 3D PLGA-based scaffolds were
fabricated for skin regeneration [6], cartilage regeneration [3,4], bone regeneration [9,10,87],
and nerve and vascular regeneration [27,85].

3.4. Poly(Ethylene Glycol) (PEG)

Hydrogels are a fast developing group of polymeric materials for 3D scaffolds in the
applications of tissue repair, restoration, and regeneration due to their highly swollen 3D
microenvironment that mimics soft tissues and allows transportation of nutrients [88,89].
Among a variety of different types of hydrogels, PEG-based hydrogels have advantages
due to their adjustable mechanical and chemical properties, capability to photopolymerize,
and controllable scaffold architecture [90,91]. PEG is a hydrophilic polymer that can have a
high water content when crosslinked into networks. In addition, due to the flexible and
neutrally charged surface, PEG has the properties of low toxicity, low protein adsorption,
and nonimmunogenicity. The chemical and mechanical properties can thus be modified
by adjusting the molecular weight, initiator, and geometries to have a varied range of
applications [92,93]. In recent years, PEG-based hydrogels have been used for a variety
of tissue regenerations, including cartilage tissue [94], bone tissue [11], neural tissue [95],
microvasculature formation [14], and cornea tissue [96].

4. Advantages and Disadvantages of Naturally Derived Polymers

Naturally derived polymers have excellent properties in the areas of immunogenic
response and biocompatibility. One of the reasons for naturally derived polymers’ excellent
biocompatibility properties is the possession of known cell-binding sites [97,98]. These
sites allow for the present growth factors to help the regeneration of the desired tissue [98].
One example of this is the compatibility of fibroblast attachment to collagen composite
scaffolds for over 14 days postcellular seeding [98]. Since these polymers are naturally
derived and contain many natural extracellular matrix components, the bodily immune
response is minimal compared to synthetic polymers [98].

Although naturally derived polymers have advantages of low immunogenic response
and biocompatibility, they lack other crucial properties. One drawback of naturally derived
polymers is the limited ability to tailor the polymers for specific properties such as mechan-
ical properties and porosity [98]. When making scaffolds for tissue engineering purposes,
tailoring pore size and mechanical properties for different cell types are necessary to im-
prove the viability and proliferation of the desired tissue. Naturally derived polymers are
subject to batch-to-batch variations, including an inaccurate mixture of biological factors,
leading to difficulty in repeatability of experiments and studies, which is not desirable [99].
Since natural polymers are derived from living tissue or from excretions of specific ani-
mals, the supply is limited, which increases the price of naturally derived polymers, being
significantly more expensive than synthetically derived polymers [97].
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5. Advantages and Disadvantages of Synthetically Derived Polymers

Synthetic polymers derived from chemical methods or processes allow for different
structures and molecular weights to be synthesized from the polymerization of differ-
ent monomers. With versatility in functional groups that can be added onto polymer
backbones and conjugation of different natural macromolecules and proteins onto the
synthetic polymer, multifunctional hybrid materials that exhibit desirable properties such
as biocompatibility, biodegradability, and triggering of intracellular signal transduction
can be engineered into scaffolds [100]. Synthetic polymers are cheaper and can be designed
to cover a range of properties enabling their use as appropriate substitutes for naturally
derived polymers. PCL, for example, has a wide range of synthesis conditions which allow
for different mechanical properties to be designed into scaffolds, as well as functional
activities such as the promotion of cell adhesion, growth, and differentiation, and even as a
transport vector for bioactive molecules [101].

On the other hand, synthetic polymers lack the biological cues found in the ECMs of
naturally derived polymers and can induce immune responses without appropriate modi-
fications [102]. The byproducts from the degradation of synthetic polymers within the host
can also cause several problems, including acid accumulation and inflammation [100,103].
For example, a gradual accumulation of acidic byproducts from PLGA substrates in bone-
derived mesenchymal stem cells culture led to acidification and demineralization of the
culture medium [104].

6. Applications of Polymeric Materials in Regenerative Medicine
6.1. Mechanical and Porosity Effects on Tissue Engineering Scaffolding Functions

Tissue engineering scaffolds’ primary function is to mimic the desired tissue’s ex-
tracellular matrix and additionally to increase cell proliferation and viability [105,106].
The correct materials need to be applied to best match the tissue’s extracellular matrix.
Mechanical properties of the scaffolding are essential to provide the right environment
for the tissue. For example, Griffith et al. developed a collagen sponge used to fabricate a
scaffold for a tissue engineered cornea. The collagen-chondroitin sulfate-based hydrogel
was modeled to match the tissue’s extracellular matrix in the cornea [107]. Layers of human
corneal epithelial and endothelial cells were used to mimic the exact tissue in the cornea.
Griffith et al. were successful in representing a typical human cornea due to modification
of the scaffolding to increase tensile strength from 800 to 1900 kPa [107].

Pores can supply valid space for cell attachment or restrict cytokines and chemokines.
Porosity, the ratio of the void space to that of the solid, and pore connectedness can
influence cell kinetics and tissue ingrowth as well as the mechanical property of the
polymer scaffold [108]. For example, primary rat osteoblast migrated faster in PolyHIPE
polymer foam with larger pores (100 nm) compared to smaller pores [109].

The ideal scaffold should have consistent mechanical properties and porosity that
match the mechanical property of the tissue to be engineered and support biological kinet-
ics [110]. The elastic modulus, tensile strength, and fatigue should match the corresponding
tissue to enhance tissue compatibility. For example, in a study to match polymer scaffold’s
mechanical property to cancellous spongy bone compressive strength (1.9 to 7.0 MPa);
chitosan and hydroxyapatite nanoparticles were used to form a honeycomb-structure scaf-
fold [111,112] which yielded a high porosity and similar compressive strength
(1.62 ± 0.22 MPa). This supported the proliferation of MC3T3-E1 cells on the scaffold
and that parameters that drive the attainment of mechanical integrity of the new tissue and
angiogenesis through porous structures are important elements of scaffold design.

6.2. Regenerative Medicine

The question now is how far have tissue regeneration technologies have advanced
and what roles do the above polymers play in those technologies? Key opinion leaders in
biomaterials research for various medical applications, including long-term drug release
from polymers and tissue engineering or regenerative medicine, claim that it is a matter of
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when and not if polymers will be used in the generation of new tissues and organs. Today,
we can already create new skin for burn victims, a technology that is being used in the
clinics. There are other organ and tissue engineering technologies in clinical trials that rely
on knowledge accumulated over the 30 years since tissue engineering work began. Bioma-
terials of all types are being used across several tissue and organ regeneration methods and
to develop tissue engineering to support people with debilitating medical conditions such
as liver dysfunction, damaged tissue from traumatic injuries, or seriously damaged organs.
Polymers make it possible for the creation of multidimensional platforms or scaffolds
that support the early stages of the development of cells into tissue by serving either as
permanent or pro tem artificial extracellular matrices. Pro tem artificial ECMs may be
nonbiodegradable, especially when used as supports in vitro while biodegradable versions
are desirable for in vivo applications [113,114]. Investigations of polymeric materials in
regenerative medicine have increased over the decades, with their application in bone
tissue being the most researched area [115]. On the other hand, the use of biomaterials in
tissue regeneration investigations for skin, cartilage, and tendon generation have either
been sustained or increased over the years.

Examples of regenerative applications using biomaterials include regeneration of carti-
lage, skin, heart, lung, valves, vascular grafts, kidney, liver, pancreas, bladder, bone cement,
and artificial blood vessels [116–133]. A selection of these applications will be discussed
below focusing on the biomaterial(s) typically used for each technology, their approval by
regulatory bodies, stage of development of the technology, and current challenges.

6.3. Skin Regeneration

Skin regeneration via tissue engineering has achieved success in the clinical setting in
recent years through the use of engineered polymers that promote wound healing. Several
polymers including fibrin and polyesters (e.g., poly 3-hydroxybutyrate) used as support
materials towards this goal are currently under investigation, although collagen-based
polymer scaffolds have increasingly been shown to be comparably effective. For example, a
collagen-based scaffold developed in the form of wound grafts, has received approval from
the U.S. Food and Drug Administration and is now marketed as Integra. Other approved
collagen-based materials include Collaplug® (Zimmer Biomet, Warsaw, IN, USA) and
Ultrafoam® (Becton Dickinson, Franklin Lakes, NJ, USA). Type I collagen is the most abun-
dant collagen and it is a natural polymer that is part of the extracellular matrix, a structural
material which provides shape and form to tissue. They form extensive interconnecting
fiber networks which provide physical support as well as supply mechanical and chemical
cues to adherent cells.

As shown in Figure 2, the typical composition of these tissue regeneration templates
will comprise the polymeric material or substrate that supports seeding cells and growth
factor immobilization. The substrates may or may not be degradable and are designed to
be nontoxic to cells, promote integration of surrounding cells, and for controlled release of
their growth factors.

The application of Integra in severely injured burned adult patients has been associated
with decreased length of hospital stay. In a survival and length of hospital stay retrospective
study conducted by Ryan CM et al. [134] using Integra dermal regeneration material in over
270 adults with burn sizes not less than 20% of body surface area, no difference in mortality
was observed between groups who received Integra dermal regeneration treatment and
those who did not. It was found that the length of hospital stay in older (>60) patients with
two or more mortality risk factors and with burn sizes greater than 40% of body surface
area was shorter (63 days) compared to 107 days in patients with two or more risk factors
who did not receive Integra.
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6.4. Cartilage Regeneration

Articular cartilage material is composed of water, electrolytes, collagen, proteoglycans,
glycoproteins, other proteins, and chondrocytes. Defects in articular cartilage are common
in orthopedic practice, but current treatment outcomes are only generally positive in the
short-term while long-term results vary. Repopulation of cartilage defects are being carried
out using hyaline cartilage polymers which contain living chondrocytes for injection
at the defect site through a minimally invasive surgical procedure to improve clinical
outcomes of conventional procedures including microfracture, physiotherapy, arthroscopic
chondroplasty, or autologous chondrocyte implantation. Hyaline cartilage is the most
abundant type of cartilage and is found inside bones and in the lining between bone joints.
Bone growth or ossification originates from these materials. On the other hand, collagen,
agarose, starch, poly(lactic acid), hyaluronic acid, poly(glycolic acid)/poly(lactic-co-glycolic
acid) (PGA/PLGA), poly(N-isopropylacrylamide) (poly(NIPAAm)), and poly(propylene
fumarate) (PPF) are among other natural and synthetic polymers that have been applied to
cartilage tissue regeneration.

Desirable properties of these polymers are their formation of hydrogels in situ and
hydrophilicity. They can therefore be injected to form scaffolds in situ so complex sur-
gical procedures may be avoided. An example of an injectable hydrogel is chitosan and
hyaluronic acid blend with encapsulated chondrocytes; this composite has shown promise
in cartilage repair [135]. Chemically crosslinked chitosan particles have also been proposed
as injectable microparticles [136]. Degradation of the hydrogels is an important fabrication
parameter and can influence outcomes of tissue regeneration. Ideally, they must dissolve
away as cartilage tissue is being formed and to allow total ingrowth of the new tissue. Too
slow a degradation rate may unnecessarily delay healing and too fast a degradation rate
may lead to incomplete or no healing. Alginate, for example, has desirable biocompatibility
properties and can form hydrogels, but its slow and difficult to control degradation can
lead to undesirable tissue regeneration outcomes. Alginate has been reported to remain
almost fully present after 3 months of implantation for cartilage regeneration although
newly formed tissue was histologically normal [137].
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6.5. Bone Regeneration

Bone regeneration is a physiological process of bone formation that is initiated to heal
fractures and continuously remodel skeletal tissue with age. In conditions such as large
bone fracture, severe and widespread infection of the bone, osteoporosis, and nonunions,
the normal bone formation process becomes inadequate. In such cases, technologies
including autologous bone graft, allograft implantation, osteoconductive scaffolds, bone
growth factors, and osteogenitor cell implantation are being used to address these defects.

However, more localized approaches have recently been pursued to address the
shortcomings of the aforementioned remediation options to accelerate the healing pro-
cess and to produce graft substitutes with appropriate mechanical properties. These
approaches are supported by a large number of synthetic bone substitutes including
hydroxyapatite, β-tricalcium phosphate, and calcium-phosphate cements, and glass ceram-
ics [138,139] which are used to promote bone cell kinesis, proliferation, and differentiation
for bone regeneration. These substitutes circumvent immunogenicity and rejection reac-
tions, the possibility of infection transmission, and cost issues associated with allogenic
bone grafts [140,141] as well as the surgical harvesting procedure and its complications,
quantity restriction, and surgical cost associated with autograph grafts [142,143].

Commercially available collagen-based polymers for bone regeneration include col-
lagen bone healing protective sheets derived from type I collagen, Collaplug® (Zimmer
Biomet, Warsaw, IN, USA), and Ultrafoam® (Becton Dickinson, Franklin Lakes, NJ, USA).

Currently, no heterologus or artificial bone substitutes have the same mechanical and
biological properties as bone; hence, alternative approaches whether used adjunctively or
as alternatives remain the goal in bone regeneration. These alternatives must overcome
current challenges and adequately capture the temporal and spatial properties of the bone
formation process. Recent advances in cellular and molecular and cellular biology keep
elucidating genes which encode for proteins that play key roles in bone repair [143] and
such discoveries may help advance the field of regenerative medicine.

6.6. Tendon Regeneration

Tendons connect skeletal muscles to bones and their complex structures and unique
mechanical properties present difficult challenges for developing scaffolds that adequately
mimic these physical attributes. They are made up of multiple layers of connective tissue
consisting mainly of collagen fibers and the tendon tissue transitions, on one end, to connect
with muscles at the myotendinous junction and on the other end to connect to compact
bone at the osteotendinous junction. Due to this complexity, only few natural and synthetic
polymer scaffolds have been proposed for tendon regeneration.

As collagen and polysaccharides are among the major components of the natural
tendon extracellular matrix which support cell adhesion and proliferation, they are among
the natural polymers being used for tendon tissue regeneration. Concerns with these
materials are their different mechanical properties to tendons that they present and the
difficulty in their processing. Other natural polymers, including chitosan and chitin, are
being investigated for tendon tissue regeneration as well.

For synthetic polymers, PGA, PLA, and polyesters are being studied for tendon tissue
regeneration. Because they are synthetic materials, they present the ability to engineer
them for desired mechanical properties. For those that are biodegradable, their byproducts
may interact with biology either positively or can lead to undesirable effects. For example,
PGA and PLA will biodegrade into glycolic and lactic acids, which are natural metabolites,
and thus are biocompatible in moderate quantities [144–146].

Tendon tissue regeneration products in clinical use include the commercial scaf-
folds: GraftJacket© (Wright Medical, Memphis, TN, USA), Restore™ (DePuy Orthopedics,
Warsaw, IN, USA), TissueMend© (Stryker Orthopedics, Mahwah, NJ, USA), CuffPatch©
(Arthrotek, Warsaw, IN, USA), Zimmer patch, formerly known as Permacol™ (Zimmer,
Warsaw, IN, USA), Shelhigh No-React© Encuff Patch (Shelhigh Inc., Union, NJ, USA),
OrthADAPT© (Pegasus Biologic Inc., Irvine, CA, USA), Bio-Blanket© (Kensey Nash Corp.,
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Exton, PA, USA), Gore-Tex© patch WL (Gore and Associates, Flagstaff, AZ, USA), Lars©
ligament (Dijon, France), Leeds–Keio© or Poly-tape© (Xiros plc, Neoligaments, Leeds, UK;
Yufu Itonaga Co., Ltd., Tokyo, Japan) and Artelon© & Sportmesh™ (Artimplant AB, Västra
Frölunda Sweden & Biomet Sports Medicine, Warsaw, IN, USA) [144]. The first eight are
sourced from animal and human cadavers while the remainder are made of synthetic
materials. Their clinical outcomes so far have been generally inconsistent and seem to
depend on the tendon involved—be it the rotator cuff, Achilles, or trapeziometacarpal.
Current data seem to suggest rotator cuff tendon regeneration applications have been less
successful than Achilles tendon procedures, although this may be because more rotator
cuff procedures are performed and hence the number of reported failed procedures is
higher [147].

7. Outlook

Polymers used to support tissue regeneration, whether in the form of a scaffold or
not, are designed to assist the restoration of tissues or organs to normal function and may
either serve as a pro tem material that degrades away after a period of time or permanently
remains at the implant site. These materials must therefore have desirable physical and
chemical properties that effectively aid the regeneration of tissue involved. It must present
the desired mechanical strength to sustain load bearing needs so neighboring healthy
tissues are protected. It must aid tissue ingrowth and accelerate regeneration and also
be biocompatible.

A deeper understanding of the roles of growth factors, small molecules, peptides,
and oligonucleotides and their stable incorporation into these materials as well as their
controlled release are important for advancing the field. Thus, guiding of development of
next generation scaffold materials with design principles and modification processes (see
Table 1) that allow for, among other things, the desired outcomes, including controlled drug
delivery, greater ingrowth of stem cell-derived cells or of genetically modified cells which
amplify key proteins for tissue regeneration may translate our current technologies into
ones with polymeric materials/scaffolds with improved safety and efficacy of bioactivities
to accelerate tissue regeneration for better patient outcomes.

Table 1. Widely accepted and emerging biopolymer structure–property relationships.

Biopolymer (Highlighted Groups Are
Modification Sites) Material Bioactivity Experimental Stage Modifications for

Additional Bioactivity
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• Biodegradable (carbonyl group
susceptible to hydrolysis)

• Hydrogen bonding

• Co-polymerization with polyesters
(poly(glycolide),
poly(epsilon-caprolactone),
poly(beta-hydroxybutyrate), etc.) for
new material properties and with
polysaccharides for faster hydrolytic
degradation

• Alkaline surface hydrolysis for creating
carboxylic acids (–COOH) and hydroxyl
(–OH) groups on PLA, which can then be
conjugated with surface modifying
species containing amine (–NH2) of
hydroxyl (–OH) groups [155,156]
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• PLGA is a biodegradable polymer, and
its degradation rate can be modulated
with glycolic amounts relative to lactide.

• Carbonyl functional groups susceptible
to hydrolysis

• Carbodiimide conjugation chemistry can
be used to attach different moieties like
alendronate in order to target specific
sites. Alendronate is a molecule with a
higher affinity to bone tissue so, with this
material, it could be possible to target an
active compound such as
N-acetylcysteine to bone tissue [157,158]
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